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INTRODUCTION 

Engineering novel cellular functions in microorganisms often requires tight control over 

expression of both native and introduced proteins.   For example, high expression levels are 

required for producing proteins for therapeutic and industrial applications [1].  Expression of 

protein systems like multidrug resistance efflux transporters may require the coordinated 

expression of each subunit at the appropriate ratio to produce functional systems [2].  

Additionally, engineering microbes for the synthesis of chemical products may require 

introduction of several genes encoding the enzymes in a metabolic pathway. These genes may 

require a delicate balance of expression levels to circumvent bottlenecks in the synthesis 

pathway [2,3, 4].  As protein expression levels often directs the function of genetic systems like 

these, fine tuned control over protein expression is required in their design.  

Protein expression is regulated at essentially every step in protein synthesis. 

Transcriptional level regulation is often a primary consideration when designing synthetic gene 

circuits through the choice and/or design of promoter systems to provide the desired 

transcriptional rates [5,6].  However, a number of studies have demonstrated that translation rates 

can also significantly influence protein expression levels.  Although transcript properties such as 

mRNA stability and codon usage are known to influence microbial translation, initiation is often 

the rate-limiting step in translation [7,8].  The rate of translation initiation, and subsequently 

protein expression levels, is determined by the sequence of the 5‟ end of the mRNA transcript.  

Several studies have demonstrated improved expression levels of proteins Escherichia coli by 

introducing mutation in only the 5‟ end of the mRNA [8,9,10].  

Translation initiation in prokaryotes is facilitated by the hybridization of the 3‟ end of the 

16S rRNA with a site on the mRNA as well as the binding of the tRNA
fMET

 to the start codon.  A 

number of sequence-specific characteristics have been identified that can decrease translation 

initiation rates, and therefore result in low expression levels.  The presence of secondary 

structure in the 5‟ region of the mRNA can limit translation due to sequestration of the 16S 

hybridization region (i.e. Shine-Dalgarno sequence) or the start codon [11]. Secondary structures 



that limit translation efficiency may be present in the 5‟ untranslated region of the transcript as 

well as in the coding region downstream of the initiation codon [12].  Therefore, use of 

previously characterized translation initiation sequences with different proteins may not reliably 

produce the same translation initiation rate.   

Additionally, it has been shown that the distance between the start codon and the 

hybridization site, called “spacing,” also affects the efficiency of translation initiation.  It is 

expected that optimal spacing is due to the physical distance between the 16S rRNA and the P-

site (entry site for the initiation tRNA) in the ribosome [13,14].  Nonoptimal spacing may require 

deformation of the mRNA sequence to allow for hybridization of the 16S rRNA and the tRNA, 

thereby decreasing the rate of initiation of translation [15]. 

  Due to the influence of the mRNA sequence on protein expression levels, several strategies 

have been developed for optimizing the 5‟ end of the transcript.  Both library and computation-

based methods have met with some success in providing desired expression in prokaryotes.  

Several studies have utilized libraries of mRNA sequences to improve protein expression levels 

as well as the function of synthetic genetic systems [2,3,16].  While library approaches been used 

with some success, as the number of proteins in the genetic system increases the library size also 

increases combinatorially [17].  Thus, complex multi-protein genetic systems may require 

screening of hundreds of sequences to tune expression of each component [2].  Large library 

screens may require a considerable amount of time as well as robust, high-throughput methods to 

identify sequences that provide the desired functional output.  

As efficient screening techniques may not be available for specific systems and the 

screening of large libraries become increasingly cost and time prohibitive, computational 

methods that design genetic components with predictive in vivo function become necessary 

alternatives. This review will describe methods for improving translational efficiency, 

highlighting two recently developed computational algorithms for the design of synthetic 

ribosome binding sites. Ribosome binding sites (RBS) in the context of this review refers to the 

5‟ region of the mRNA transcript which flanks the start codon and influences translation 

initiation.   

 

STRATEGIES FOR OPTIMIZING TRANSLATION INITIATION 

Minimization of mRNA Secondary Structure 



 The presence of secondary structure in the mRNA transcript has been shown to influence 

translation initiation due to sequestration of the 16S rRNA hybridization sequence, region for 

ribosome docking, and/or the start codon [11].  To address this, algorithms for predicting RNA 

secondary structure have been used to minimize secondary structure in RBS sequences.  Mfold is 

one of the most commonly used programs for predicting nucleic acid secondary structure and has 

been used extensively in designing RBS sequences.  Mfold determines minimal free energy of 

predicted folded structures [18].  Several groups have demonstrated that mutations in the 5‟ 

region of the mRNA transcript that destabilize secondary structures as calculated by programs 

like Mfold result in improved expression levels [9,10].  This practice has primarily been used to 

achieve high levels of expression of one or more genes [1,19].  However, this strategy may not 

allow for more accurate control of translation initiation rates (and protein expression) as the 

presence of secondary structure is just one limiting factor in translation initiation.   

 

RBS Calculator 

Algorithm Summary 

As engineered genetic systems become increasingly complex, RBS design strategies that 

focus solely on minimizing mRNA secondary structure may not be sufficient to rationally design 

systems that operate as desired. Salis, et al recently developed the “RBS Calculator” which 

allows for both the prediction of translation initiation rates for existing RBS sequences (reverse 

engineering) as well as the design of synthetic ribosome binding sties with user-specified target 

initiation rates (forward engineering) [17].  The RBS Calculator builds upon previous methods 

for enhancing translation initiation that focused primarily on minimization of 5‟mRNA 

secondary structure.  In addition to secondary structure, the Calculator takes into account binding 

affinity for the 16S rRNA and spacing building a more complete model of translation initiation.   

The RBS Calculator models the molecular interactions involved in translation initiation 

taking into account ribosome binding occlusion due to mRNA secondary structure as well as 

affinity between the transcript and the 16S rRNA.  The model predicts the free energy change 

(ΔGtot) during the transition from a free mRNA transcript to the mRNA subunit bound to the 30S 

ribosomal subunit (Figure 1).   



 
Figure 1:  Model of translation initiation in the RBS Calculator  
The RBS Calculator determines the free energy change (ΔGtot) in the transition from free mRNA 

and the 30S ribosomal subunit to the final state of a 30S bound mRNA. Adapted from ref. [17]. 

 

The overall change in free energy (ΔGtot) is determined as follows:   
 

                                                     

in which:   

1)  ΔGmRNA:rRNA= energy released upon hybridization of the 3‟ end of 16S rRNA with the 

mRNA (higher the affinity, the more negative this term) 

2) ΔGstart= energy released upon binding of the tRNA
fMet

 with the start codon 

3) ΔGspacing = energy penalty for suboptimal spacing (determined empirically for E. coli) 

4) ΔGstandby= work required to unfold secondary structure in the standby site that may occlude 

ribosome from docking on the transcript  

5) ΔGmRNA = work required to unfold mRNA sequence surround start codon  

 

Calculations of the free energy changes for RNA hybridization interactions are determined using 

MFold v3.0 and NuPack algorithms.  The energetic penalty for nonoptimal spacing was 

determined empirically for E. coli by fitting protein expression levels for synthetic RBS with 

varying spacing lengths while holding all other free energy changes constant [17].   

For predicting translation initiation rates, the RBS Calculator scans the mRNA transcript 

for the optimal 16S rRNA hybridization sequence which balances the energy released upon 

hybridization with energetic penalties due to imperfect spacing.  The algorithm correlates the 

predicted ΔGtot with a probability of the ribosome being bound to the mRNA transcript using the 

Boltzmann distribution.  This probability is then proportional to the translation initiation rate, 

and subsequently protein expression levels, as shown below:   

 

                                              
 

This equation allows for the prediction of the relative translation initiation rate.  Based on the 

model, lower values of ΔGtot (i.e. more negative) should result in increased translation initiation 

rates.  β corresponds to the apparent Boltzmann constant for the system and was empirically 

determined in E. coli.   



  This statistical thermodynamic model which predicts translation initiation rates was 

utilized with an algorithm to design synthetic ribosome sites.  The user inputs the targeted 

translation initiation rate (on a relative scale ranging from 1 to 10
5
) and the protein coding 

sequence.  The algorithm begins with a random upstream sequence and iteratively makes 

nucleotide mutations and calculates the ΔGtot until the calculated initiation rate approaches the 

target rate.  The authors demonstrated the ability of the algorithm to both predict translation 

initiation rates of existing RBS sequences as well as design synthetic sequences that provide a 

wide range of target initiation rates and therefore, expression levels (Figure 2).   

 
Figure 2:  Use of RBS Calculator to predict initiation rates and design RBS sequences 

(A) Predicting translation initiation rates of a given RBS sequence. (B) Expression of red 

fluorescent protein (RFP) driven by existing RBSs and the corresponding ΔGtot as predicted by 

the RBS Calculator.  (C) Designing synthetic RBS sequence: given a target initiation rate, the 

algorithm iteratively generates random mutations in an initial sequence and calculates the ΔGtot 

until the target is reached.  (D) Expression of RFP under the control of RBS sequences designed 

by the RBS Calculator and the target ΔGtot used to design RBSs. Adapted from ref. [17]. 

 



Limitations of Algorithm 

In general, previous attempts to rationally improve ribosome binding sequences have 

focused on maximizing expression levels [1,7].  The RBS Calculator, however, predicts 

sequences with translation rates (and therefore protein expression levels) over a range of five 

orders of magnitude.   Although the RBS Calculator was demonstrated to be a relatively efficient 

method for predicting RBS sequences that provided desired expression levels, the algorithm is 

not perfect.  There is a 47% probability that the output sequence will provide expression levels 

within two-fold of the target level.  Therefore, testing several output sequences will likely be 

required to identify the sequence that will provide the desired expression level in vivo [17].  

Compared with library-based approaches, the RBS Calculator can significantly reduce the 

number of translation initiation sites that must be screened [2].   

  In general, E. coli is the organism of choice for most microbial metabolic engineering and 

synthetic biology systems however, other microbial hosts have been explored for metabolic 

engineering and synthetic biology systems [1,19].  The RBS calculator was developed and tested 

in E. coli expression systems so it may not have the same predictive power in other microbial 

hosts.  The RBS calculator does allow the user to specify the sequence of the 3‟ end of the 16S 

rRNA for other prokaryotic organisms thereby allowing the calculator to be used in other 

expression systems.  However, the other parameters determined empirically for E. coli including 

energetic penalties for nonoptimal spacing and the β conversion factor (that translates the 

calculated ΔGtot to a relative translation initiation rate) are not adjusted.  Gram negative bacteria, 

such as E. coli, share similarities in their translational machineries and the RBS Calculator has 

been implemented in two different species of gram-negative bacteria, Klebsiella M5AL 

and Salmonella enterica (http://voigtlab.ucsf.edu/software/).  Gram positive bacteria are known 

to differ in some characteristics of their translational machinery in comparison to gram negative.  

For example, Bacillus subtilis was shown to exhibit less tolerance to suboptimal spacing and 

secondary structure than E. coli.  Therefore, the energetic penalties for spacing and unfolding 

secondary structure may need to be weighted if the algorithm is to be implemented in B. subtilis 

[15].  In general, it seems that additional testing and parameter estimation will need to be 

performed to optimize the predictive power of the RBS Calculator in different organisms.   

 

RBSDesigner 

Algorithm Summary 

http://voigtlab.ucsf.edu/software/


Na, et al. recently developed a mathematical model for predicting RBS translational 

initiation rates and applied their model to designing synthetic RBS sequences to control protein 

expression levels over a five order of magnitude range [20].  Although the algorithm differs 

slightly from the RBS Calculator, the approach is similar.  The RBS Calculator sums the 

energetic contributions of different elements in translation initiation (16S rRNA hybridization, 

spacing, etc) into a final ΔGtot.  This parameter is then converted into a probability for translation 

initiation.  Na, et al. also uses a similar statistical thermodynamics approach; however, their 

algorithm calculates the probability of sequential stages of translation initiation based on free 

energy change (Figure 3).  These probabilities are then applied to a system of ordinary 

differential equations (ODE) that model ribosome binding to unfolded mRNA at steady state.  

The ODE model requires several parameters including the steady state quantity of ribosomes, 

mRNA transcripts, and the number of ribosomes that can be on a given mRNA at any given 

time.  These values of these parameters were estimated from the literature for E. coli.    

 
Figure 3:  Summary of model for estimating translation efficiency.  Adapted from ref. [20]. 

Sequence of translation initiation events that are included in algorithm:   

1) Determine all possible secondary structures of the mRNA transcript  

2) Calculate  probabilities of occupying each conformation based on their free energy (PA) 

3) Calculates probability of each structure unfolding thereby allowing ribosome to bind (PB) 

4) Calculate probability that unfolded structures will be occupied by a ribosome (PC) 

 

                        
                      

          
    

 

The final probability, PC, is similar to the translation initiation rate used by the RBS Calculator; 

both are essentially a measure of the relative number of mRNA transcripts bound to ribosomes 

and therefore actively producing protein.  The key parameters assessed in both the RBS 

Calculator and the Na, et al. algorithm are essentially the same:  ribosome affinity and mRNA 



secondary structure that may occlude ribosome binding [17,20].  Although not included in the 

initial design, the publically available version of the algorithm, RBSDesigner, was updated to 

incorporate penalties due to suboptimal spacing (similar to the RBS Calculator, although the 

details of the modified algorithm have not been presented) [21].  One improvement in this 

algorithm is that it allows multiple mRNA secondary structures while the RBS Calculator uses 

only a single folded mRNA transcript state [17,20].   

  The optimization algorithm used in RBSDesigner to design synthetic RBS sequences also 

differs slightly from the RBS Calculator.  Both iteratively make mutations in randomized RBS 

sequences until the target efficiency (or initiation rates for the RBS Calculator) is reached.  

However, the RBSDesigner performs calculations for 100 sequences simultaneously and outputs 

the 10 sequences closest to the target efficiency while the calculator outputs a single sequence 

[20,21].  Therefore, the RBS Calculator must be run several times with the same input 

parameters to obtain multiple sequences. However, in personal tests of the RBS Calculator the 

designed RBS sequence was determined within minutes, while the RBSDesigner may be on the 

order of hours [21].  This time difference may be due in part due to the complexity of the 

algorithm (scanning 100 sequences at once as opposed to one), but also the computing power 

available.  Currently the RBS Calculator is publically available via web server, while the RBS 

Designer must be downloaded onto the user computer. 

  The algorithm developed by Na, e al. was also demonstrated to be able to fairly accurately 

estimate translational efficiencies (i.e. expression levels) as well as design RBS sequences with a 

five-order of magnitude range of expression levels (Figure 4).   

 
Figure 4:  RBSDesigner for predicting translation efficiencies and design RBS sequences 



(A) Estimated translation efficiencies of existing RBS sequences for the MS2 coat gene. (B) 

Expression levels of luxR under control of synthetic RBS sequences as a function of the target 

translation efficiency.  Adapted from ref. [20]. 

 

Limitations 

  As the algorithm of RBSDesigner considers the same key parameters of translation 

initiation as the RBS Calculator, it suffers from a number of the same limitations.  Both 

algorithms will likely require testing of several output sequences to identify the RBS that 

provides the desired output function.  Additionally, RBSDesigner was designed and tested in E. 

coli, therefore may not work efficiently in other microbial expression systems.  

Several parameters of the RBS Calculator used to design synthetic RBS sequences were 

fit from empirical studies in E. coli.  The RBSDesigner used parameters obtained from the 

literature including the steady state quantities of ribosomes and mRNA transcripts in E. coli [20].  

These parameters can differ significantly even within E. coli between a number of experimental 

conditions. Therefore, the predictive power of the RBSDesigner is unclear beyond the conditions 

tested in this study.  The RBS Calculator was demonstrated to maintain its ability to predict 

relative expression levels when the protein of interest was under the control of promoters of 

varying strength [17]. As the RBSDesigner relies on estimation of mRNA transcript quantity, 

conditions that perturb this quantity such as the use of different promoter strengths may reduce 

its predictive power.  Additionally, the gene copy number (such as using plasmids with varying 

copy number), mRNA stability, and the physiological state of the cell will impact the parameters 

used in the RBSDesigner algorithm [4,17].  Additional testing is required even within E. coli 

expression systems to determine the ability of RBSDesigner to accurately predict translational 

efficiencies and design synthetic RBS sequences under different experimental conditions.   

 

FUTURE DIRECTIONS AND CONCLUSIONS 

  The development of the RBS Calculator and RBSDesigner demonstrate a significant step 

towards computational approaches to design a single component of synthetic genetic systems, 

ribosome binding sites.  Previous work has focused primarily on maximizing protein expression 

through minimization of 5‟ secondary structure.  However, engineered genetic systems may 

require more predictive and fine-tuned control over expression levels.  These computational 

methods are a step towards the rational design of RBS sequences and may allow for testing of 

significantly fewer sequences than library-based methods. 



  As the development of both algorithms is fairly recent, further experimentation will need 

to be performed to further demonstrate the predictive power of these algorithms under different 

conditions such as through the expression of different proteins, under different promoters, etc. 

For example, due to a lack of experimental evidence it is currently unclear if these RBS design 

algorithms would be able to design RBS sequences in the intergenic regions of operons to tune 

the relative expression of the genes contained on the operon.  As the transcript abundance of 

each gene on the operon should be equivalent, post-transcriptional level regulation is the primary 

method of controlling relative expression levels [2,4].  Thus, the RBS algorithms reviewed here 

may be a useful tool for designing the intergenic regions of synthetic operons.  However, further 

experimentation will need to be performed since translation initiation may not be the only 

method of controlling expression of the genes on the operon.     

Both the RBS Calculator and RBSDesigner may be primarily limited to use in an E. coli 

expression host, unless parameters are experimentally determined and validated in other 

organisms.  In addition to organism specificity, there are several areas that may be explored for 

improving the predictive power of these RBS design algorithms.  Several properties of the 

mRNA were not included in the model have been shown to influence translational efficiencies.  

For example, codon usage has been demonstrated to impact expression levels, potentially due to 

ribosome stalling and premature translation termination [1].  Computational algorithms have 

been developed for increasing protein expression levels based on optimization of the codon 

usage [22,23].  Additionally, suboptimal codon usage may cause translation elongation to be the 

rate limiting step in translation, thereby reducing the predictive power of the RBS algorithms 

which assume initiation is the rate-limiting step.  Therefore, such algorithms may be used to in 

tandem with RBS design programs to improve the predictive power of the RBS design 

algorithms and therefore the desired expression levels [21].    

The stability of mRNA transcripts in vivo is also not considered in either algorithm.  The 

degradation rate of mRNA is dependent on elements in the transcript that protect against 

enzymatic degradation such as the presence of RNase sites and/or stabilizing secondary 

structures [2,4].  Neither algorithm accounts for the presence of RNase binding sites.  

Additionally, secondary structure is considered at the level of occluding translation initiation, 

however, not as potential protection against endonuclease degradation.  While the factors that 

control RNA susceptibility are less studied than RBS and codon usage, they are an example of 



one area that may be explored to further improve the design algorithms to more accurately model 

translation in vivo [4].   

One last point of consideration is that although initiation is often the rate limiting step 

during translation, it is only one stage in the production of proteins.  Other factors such as 

transcription rates and protein folding efficiencies can significantly influence expression levels 

[19].  Regulation at each protein synthesis stage may need to be controlled to produce 

functioning engineered genetic systems.  As engineered genetic systems grow increasingly 

complex, optimization of each component becomes increasingly inefficient.  Therefore, models 

and design algorithms for various genetic elements such as ribosome binding sites may facilitate 

the rapid and accurate design of entire systems [5].  The RBS design algorithms presented in this 

review, along with models of promoters and other genetic elements, are a step towards the goal 

of predictive computational design of synthetic genetic systems.  Although further experimental 

validation will likely need to be performed, computational methods for RBS design including the 

RBS Calculator and the RBSDesigner will likely have significant impacts in protein production 

technology, metabolic engineering, and synthetic genetic circuit design. 
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